Bounding Skeletons, Locally Scoped Terms and Exact Bounds for Linear Head Reduction
نویسنده
چکیده
Bounding skeletons were recently introduced as a tool to study the length of interactions in Hyland/Ong game semantics. In this paper, we investigate the precise connection between them and execution of typed λ-terms. Our analysis sheds light on a new condition on λ-terms, called local scope. We show that the reduction of locally scoped terms matches closely that of bounding skeletons. Exploiting this connection, we give upper bound to the length of linear head reduction for simply-typed locally scoped terms. General terms lose this connection to bounding skeletons. To compensate for that, we show that λ-lifting allows us to transform any λ-term into a locally scoped one. We deduce from that an upper bound to the length of linear head reduction for arbitrary simply-typed λ-terms. In both cases, we prove the asymptotical optimality of the upper bounds by providing matching lower bounds.
منابع مشابه
Bounding linear head reduction and visible interaction through skeletons
In this paper, we study the complexity of execution in higher-order programming languages. Our study has two facets: on the one hand we give an upper bound to the length of interactions between bounded P-visible strategies in Hyland-Ong game semantics. This result covers models of programming languages with access to computational effects like non-determinism, state or control operators, but it...
متن کاملStrong exponent bounds for the local Rankin-Selberg convolution
Let $F$ be a non-Archimedean locally compact field. Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$. We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$. We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$. Using the Langlands...
متن کاملA level-2 reformulation-linearization technique bound for the quadratic assignment problem
This paper studies polyhedral methods for the quadratic assignment problem. Bounds on the objective value are obtained using mixed 0–1 linear representations that result from a reformulation–linearization technique (rlt). The rlt provides different “levels” of representations that give increasing strength. Prior studies have shown that even the weakest level-1 form yields very tight bounds, whi...
متن کاملBounds on System Reliability by Linear Programming
Bounds on system probability in terms of marginal or joint component probabilities are of interest when exact solutions cannot be obtained. Currently, bounding formulas employing unicomponent probabilities are available for series and parallel systems, and formulas employing biand higher-order component probabilities are available for series systems. No theoretical formulas exist for general sy...
متن کاملar X iv : 0 80 1 . 06 10 v 1 [ qu an t - ph ] 3 J an 2 00 8 Bounding the Bogoliubov coefficients
While over the last century or more considerable effort has been put into the problem of finding approximate solutions for wave equations in general, and quantum mechanical problems in particular, it appears that as yet relatively little work seems to have been put into the complementary problem of establishing rigourous bounds on the exact solutions. We have in mind either bounds on parametric...
متن کامل